

Outline

- The XMASS experiment
- Recent dark matter results
 - Annual modulation search [Phys. Lett. B759 (2016)272-276]
 - WIMPs search by fiducialization
 New results !!
- Supernova neutrino detection via coherent scattering [Astropart. Phys. 89 (2017) 51-59]
- Summary

The XMASS project

- XMASS: a multi purpose experiment with liquid xenon
- Located 1,000 m underground (2,700 m.w.e.)
 at the Kamioka Observatory in Japan
- Aiming for
 - Direct detection of dark matter
 - Observation of low energy solar neutrinos $(pp/^{7}Be)$
 - Search for neutrino-less double beta decay
- Features
 - ➤ Low energy threshold (~0.5keVee)
 - \triangleright Sensitive to e/ γ events as well as nuclear recoil
 - > Large target mass and its scalability

Single-phase liquid Xenon detector: XMASS-I

- Liquid xenon detector
 - 832 kg of liquid xenon (-100 °C)
 - 642 2-inch PMTs
 (Photocathode coverage >62%)
 - Each PMT signal is recorded by
 10-bit 1GS/s waveform digitizers
- Water Cherenkov detector
 - 10m diameter, 11m high
 - 72 20-inch PMTs
 - Active shield for cosmic-ray muons
 - Passive shield for n/γ

Diversity of physics target with XMASS

Dark matter searches

WIMP-¹²⁹Xe inelastic scattering *PTEP (2014) 063C01*

Bosonic super-WIMPs search *Phys. Rev. Lett.* 113 (2014) 121301

Annual modulation search *Phys. Lett. B759 (2016) 272*

Solar axion search

Possibility of supernova neutrino detection

Search for 2v double electron capture on 124 Xe, 126 Xe

Phys. Lett. B759 (2016) 64

5

Search for annual modulation

- Expect annual modulation of event rate of dark matter signal due to Earth's rotation around the Sun.
- DAMA/LIBRA claims modulation at 9.3σ
 - ➤ Total exposure of 1.33 ton year (14 cycles)
 - ➤ Modulation amplitude of (0.0112+/-0.0012) cpd/kg/keV for 2-6 keV

- Annual modulation search in XMASS
 - > 359.2 live days x 832 kg (=0.82 ton year)
 - Analysis threshold 1.1 keVee (=4.8 keVnr)
 - \triangleright Look for event rate modulation not only for nuclear recoil but also for e/ γ events

Modulation analysis

Two different fitting methods

Pull term (Method-1)

Covariance matrix (Method-2)

$$\chi^{2} = \sum_{i}^{E_{bins}} \sum_{j}^{t_{bins}} \left(\frac{(R_{i,j}^{\text{data}} - R_{i,j}^{\text{ex}} - \alpha K_{i,j})^{2}}{\sigma (\text{stat})_{i,j}^{2} + \sigma (\text{sys})_{i,j}^{2}} \right) + \alpha^{2}$$

$$\chi^{2} = \sum_{k,l}^{N_{\text{bins}}} (R_{k}^{\text{data}} - R_{k}^{\text{ex}})(V_{\text{stat}} + V_{\text{sys}})_{kl}^{-1} (R_{l}^{\text{data}} - R_{l}^{\text{ex}})$$

Our data demonstrate high sensitivity to modulation

Modulation analysis: WIMP results

Expected event rate

$$R_{i,j}^{\text{ex}} = \int_{t_j - \frac{1}{2}\Delta t_j}^{t_j + \frac{1}{2}\Delta t_j} \left(C_i + \sigma_{\chi n} \cdot A_i(m_\chi) \cos 2\pi \frac{(t - t_0)}{T} \right) dt$$

- \rightarrow T= 1year, t₀=152.5 day (fixed)
- \triangleright Ai(m_{γ}): modulation amplitude
- > Ci: unmodulated event rate
- WIMP mass range 6 to 20 GeV/c²
- Both fitting methods give similar results
- Exclude almost all the DAMA/LIBRA allowed region by modulation search

Modulation analysis: model independent results

(*) We estimated the XENON100 90% CL limit based on PRL 115 (2015) 091302 and Science 349 (2015) 852.

- Without assuming any specific model except for T=1 year, t₀=152.5 day
- Includes both NR and e/γ signals
- Shows slightly negative amplitudes in the 1.6-4.1 keVee range.
- P-values
 - \triangleright 0.014 (2.5 σ) for method-1
 - \triangleright 0.068 (1.8 σ) for method-2
- Gives 90% CL limits for positive and negative amplitude separately

Modulation search with 2.7 years data

- Accumulated 800 live days of data until Aug. 2016.
- Achieved stable detector operation especially during run 2
- Will perform frequency and phase analyses
- Results will come soon.

WIMPs search by fiducialization

⁵⁷Co 122keV

Reconstructed vertex

Traces of γ -rays from PMTs

Fiducial volume R<20cm

- Self-shielding of external γ -rays owing to high atomic number (Z=54) and high density (2.9g/cm3)
- Event vertex position and energy are reconstructed using number of PE in each PMT

$$L(\mathbf{x}) = \prod_{i=1}^{642} p_i(n_i)$$

P_i (n) : probability that the i-th PMT detects n PE

Background understanding w/o fiducialization

- All the detector material was screened by the Ge detector before installation.
- The energy spectrum above 30 keV was fitted under the constraints by the screening results.
- Alpha-ray events are selected using scintillation decay time. They are used to constrain PMT/copper surface/bulk ²¹⁰Pb.
- Contamination of ²¹⁰Pb (~20 mBq/kg)
 in the bulk of oxygen-free copper
 was identified by the low background
 alpha-particle counter (XIA Ultra-Lo-1800)
 - paper in preparation

12

Energy spectrum after fiducialization

- 706 live days taken in Nov. 2013 Mar. 2016
- Fiducial mass 97kg (R<20cm)

- Main BG in the WIMP search region
 - ≥ ²¹⁰Pb in the copper bulk
 - $\triangleright \gamma$ -rays from PMTs
- Internal RIs dominate above 15keVee
- Neutrons, alpha-rays are negligible
- Dominant systematic uncertainty is condition of detector inner surface (gap size, surface roughness)

WIMP search result

- The energy spectrum at 2-15 keVee is fitted with signal + BG
- Systematic uncertainties are taken into account as nuisance parameters
- 90% CL upper limit on spin-independent
 WIMP-nucleon cross section is derived

 σ_{SI} <2.2x10⁻⁴⁴ cm² (90%CL, for 60 GeV/c² WIMP)

Supernova neutrino detection via coherent scattering

Coherent elastic neutrino-nucleus scattering (CEvNS)

$$\nu_x + A \rightarrow \nu_x + A$$

- Sensitive to all neutrino flavors
- Nuclear recoil with less than a few ten's keV
- Large dark matter detectors are sensitive to galactic supernova neutrinos via CEvNS.
- In the case of supernova at 10 kpc,
 3.5-21 events are expected in 18 sec
 depending on the supernova models.

• For Betelgeuse (196 pc), ~10⁴ events are expected.

Summary

- XMASS is a multi-purpose experiment using liquid xenon.
- Annual modulation search
 - With 1-year of data, no significant modulation was observed.
 - Results from 2.7 years of data will come soon.
- WIMP search by fiducialization
 - 706 live days x 97 kg fiducial mass
 - Limit on SI WIMP-nucleon cross section σ <2.2x10⁻⁴⁴ cm² for 60 GeV/c²
- XMASS is waiting for neutrinos from galactic supernovae
- More physics results will be presented at coming summer conferences.
 Stay tuned!!

Backup slides

Search for light WIMPs

- Use full volume of LXe
- 6.7 days x 835 kg
- 0.3 keVee threshold

Published in Phys. Lett. B 719 78 (2013)

Search for solar axions

 Axions can be produced in the sun by bremsstrahlung and Compton effect, and detected by axio-electric effect in XMASS.

Used the same data set as the light WIMPs search.

Axio-electric effect

Published in Phys. Lett. B 724 46 (2013)

Search for ¹²⁹Xe inelastic scattering by WIMPs

$$\chi + {}^{129}Xe \rightarrow \chi + {}^{129}Xe^*$$

$${}^{129}Xe^* \rightarrow {}^{129}Xe + \gamma (39.6 \text{keV})$$

3/2+ 39.578 0.97 ns

1/2+ 0 stable
54Xe

■ Natural abundance of ¹²⁹Xe: 26.4%

Published in PTEP 063C01 (2014)

Search for bosonic super-WIMPs

- -- Pre-selection
- -- Fiducial volume cut
- -- Timing balance cut
- -- Topological cut

- Bosonic super-WIMPs
 - Lighter and more weekly interacting than WIMPs
 - Candidate for lukewarm dark matter
 - Can be pseudoscaler or vector boson.
 - Can be detected by absorption of the particle, which is similar to the photoelectric effect.

- Search for bosonic super-WIMPs in XMASS
 - 165.9 days data taken in Dec. 2010 May 2012
 - ➤ 41 kg fiducial mass
 - Remaining event rate ~10⁻⁴ dru (²¹⁴Pb from ²²²Rn)

Constraint on coupling constants

- Vector boson case
 - ➤ The first direct search in the 40–120 keV range.
 - We exclude the possibility that such particles constitute all of dark matter.
- Pseudoscaler case
 - > The most stringent direct constraint on gaee.

Phys. Rev. Lett. 113 (2014) 121301

2v double electron capture on ¹²⁴Xe

 Natural xenon contains ¹²⁴Xe (N.A.=0.095%) which can undergo 2vECEC.

¹²⁴Xe (g.s., 0⁺) + 2
$$e^{-}$$
 \rightarrow ¹²⁴Te (g.s., 0⁺) + 2 v_e + 2864keV

- In the case of 2 K-shell electrons are captured,
 - Only X-rays and Auger electrons are observable
 - Total energy deposit is 2 x E_B =63.6 keV
- Expected half-life is 10²⁰-10²⁴ years.
- ¹²⁶Xe (N.A.=0.089%) can also undergo 2vECEC, but it is much slower due to smaller Q-value (896keV).

Limits on 2v 2K-capture half-lives

- We derived the 90% CL lower limit on ¹²⁴Xe 2vECEC half-life using the Bayesian approach.
- Since we do not see signal, we set limit on ¹²⁶Xe 2vECEC half-life as well.

$$T_{1/2}^{2v2K}(^{124}Xe)>4.7x10^{21} \text{ yrs}$$

 $T_{1/2}^{2v2K}(^{126}Xe)>4.3x10^{21} \text{ yrs}$ (90%CL)

The world best limits to date!!
Published in Phys. Lett. B759 (2016) 64.

Comparison of background rate in fiducial volume including both nuclear recoil and e/γ events

- XMASS achieved low background rate of $O(10^{-4})$ dru in a few 10s keV including e/γ events
- Low background rate for e/γ events is good for searching for dark matter other than WIMPs.

Original figure taken from D. C. Mailing, Ph.D (2014) Fig 1.5

Inner calibration system

- Various RI sources can be inserted
- Used for light yield monitoring, optical parameter tuning, energy and timing calibrations etc.

RI	Energy [keV]	Diameter [mm]	Geometry
⁵⁵ Fe	5.9	10	2pi source
¹⁰⁹ Cd	8, 22, 25, 88	5	2pi source
²⁴¹ Am	17.8, 59.5	0.17	2pi/4pi source
⁵⁷ Co	59.3 (W X-ray), 122	0.21	4pi source
¹³⁷ Cs	662	5	cylindrical

⁵⁷Co source

Source rod (Ti)

Measurement of LXe scintillation time profile for low energy gamma-ray induced events

- Using ⁵⁵Fe, ²⁴¹Am, and ⁵⁷Co sources (E γ =5.9-120keV)
- Waveforms are decomposed into "single PE" pulses
- MC simulation takes into account optical parameters (absorption, scattering, ...), electronics response
- Timing distributions of data and MC are compared to obtain intrinsic decay time parameters.

Measurement of LXe scintillation time profile for low energy gamma-ray induced events

$$f(t) = \frac{F_1}{\tau_1} \exp\left(-\frac{t}{\tau_1}\right) + \left(\frac{1 - F_1}{\tau_2}\right) \cdot \exp\left(-\frac{t}{\tau_2}\right)$$

- Fast decay component is needed to reproduce our calibration data.
 - $\succ \tau_1$ =2.2 ns (fixed)
 - F_1 : 0.05~0.15 (increase at low energy)
- Energy dependence of decay time was studied as a function of mean kinetic energy of electrons induced by γ-ray

Alpha event spectrum:

Composition of background after fiducialization

⁴⁰K, ⁶⁰Co, ²³²Th, ²³⁸U in PMT ²³⁸U, ²¹⁰Pb in PMT seal ²¹⁰Pb in copper bulk ²¹⁰Pb on copper surface Internal RIs

Reconstruction energy [keVee]

Supernova neutrino energy spectra

Nuclear recoil energy spectrum by supernova neutrinos

• XMASS can detect mainly v_x

Sensitive to neutrinos with Ev>15MeV

Expected time profile of supernova neutrino events in XMASS

